Abstract
Bronchopulmonary dysplasia (BPD) is a common lung disease affecting premature infants that develops after exposure to supplemental oxygen and reactive oxygen intermediates. Extracellular superoxide dismutase (SOD3) is an enzyme that processes superoxide radicals and has been shown to facilitate vascular endothelial growth factor (VEGF) and nitric oxide (NO) signaling in vascular endothelium. We utilized a mouse model of neonatal hyperoxic lung injury and SOD3 knockout (KO) mice to evaluate its function during chronic hyperoxia exposure. Wild-type age-matched neonatal C57Bl/6 (WT) and SOD3−/− (KO) mice were placed in normoxia (21% FiO2, RA) or chronic hyperoxia (75% FiO2, O2) within 24 h of birth for 14 days continuously and then euthanized. Lungs were harvested for histologic evaluation, as well as comparison of antioxidant enzyme expression, SOD activity, VEGF expression, and portions of the NO signaling pathway. Surprisingly, KO-O2 mice survived without additional alveolar simplification, microvascular remodeling, or nuclear oxidation when compared to WT-O2 mice. KO-O2 mice had increased total SOD activity and increased VEGF expression when compared to WT-O2 mice. No genotype differences were noted in intracellular antioxidant enzyme expression or the NO signaling pathway. These results demonstrate that SOD3 KO mice can survive prolonged hyperoxia without exacerbation of alveolar or vascular phenotype.
Funder
National Heart, Lung, and Blood Institute
Little Giraffe Foundation
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献