Val16A SOD2 Polymorphism Promotes Epithelial–Mesenchymal Transition Antagonized by Muscadine Grape Skin Extract in Prostate Cancer Cells

Author:

Sweeney Janae D.,Debeljak MarijaORCID,Riel Stacy,Millena Ana Cecilia,Eshleman James R.,Paller Channing J.ORCID,Odero-Marah Valerie

Abstract

Epithelial–mesenchymal transition (EMT), a key event in cancer metastasis, allows polarized epithelial cells to assume mesenchymal morphologies, enhancing invasiveness and migration, and can be induced by reactive oxygen species (ROS). Val16A (Ala) SOD2 polymorphism has been associated with increased prostate cancer (PCa) risk. We hypothesized that SOD2 Ala single nucleotide polymorphism (SNP) may promote EMT. We analyzed SOD2 expression and genotype in various prostate cell lines. Stable overexpression of Ala-SOD2 or Val-SOD2 allele was performed in Lymph Node Carcinoma of the Prostate (LNCaP) cells followed by analysis of intracellular ROS and EMT marker protein expression. Treatments were performed with muscadine grape skin extract (MSKE) antioxidant, with or without addition of H2O2 to provide further oxidative stress. Furthermore, MTS cell proliferation, cell migration, and apoptosis assays were completed. The results showed that SOD2 expression did not correlate with tumor aggressiveness nor SOD2 genotype. We demonstrated that the Ala-SOD2 allele was associated with marked induction of EMT indicated by higher Snail and vimentin, lower E-cadherin, and increased cell migration, when compared to Val-SOD2 allele or Neo control cells. Ala-SOD2 SNP cells exhibited increased levels of total ROS and superoxide and were more sensitive to co-treatment with H2O2 and MSKE, which led to reduced cell growth and increased apoptosis. Additionally, MSKE inhibited Ala-SOD2 SNP-mediated EMT. Our data indicates that treatment with a combination of H2O2-generative drugs, such as certain chemotherapeutics and antioxidants such as MSKE that targets superoxide, hold promising therapeutic potential to halt PCa progression in the future.

Funder

National Institute on Minority Health and Health Disparities

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3