Abstract
Epithelial–mesenchymal transition (EMT), a key event in cancer metastasis, allows polarized epithelial cells to assume mesenchymal morphologies, enhancing invasiveness and migration, and can be induced by reactive oxygen species (ROS). Val16A (Ala) SOD2 polymorphism has been associated with increased prostate cancer (PCa) risk. We hypothesized that SOD2 Ala single nucleotide polymorphism (SNP) may promote EMT. We analyzed SOD2 expression and genotype in various prostate cell lines. Stable overexpression of Ala-SOD2 or Val-SOD2 allele was performed in Lymph Node Carcinoma of the Prostate (LNCaP) cells followed by analysis of intracellular ROS and EMT marker protein expression. Treatments were performed with muscadine grape skin extract (MSKE) antioxidant, with or without addition of H2O2 to provide further oxidative stress. Furthermore, MTS cell proliferation, cell migration, and apoptosis assays were completed. The results showed that SOD2 expression did not correlate with tumor aggressiveness nor SOD2 genotype. We demonstrated that the Ala-SOD2 allele was associated with marked induction of EMT indicated by higher Snail and vimentin, lower E-cadherin, and increased cell migration, when compared to Val-SOD2 allele or Neo control cells. Ala-SOD2 SNP cells exhibited increased levels of total ROS and superoxide and were more sensitive to co-treatment with H2O2 and MSKE, which led to reduced cell growth and increased apoptosis. Additionally, MSKE inhibited Ala-SOD2 SNP-mediated EMT. Our data indicates that treatment with a combination of H2O2-generative drugs, such as certain chemotherapeutics and antioxidants such as MSKE that targets superoxide, hold promising therapeutic potential to halt PCa progression in the future.
Funder
National Institute on Minority Health and Health Disparities
National Institute of General Medical Sciences
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献