Functionalization of Betulinic Acid with Polyphenolic Fragments for the Development of New Amphiphilic Antioxidants

Author:

Sousa Joana L. C.ORCID,Gonçalves Cristiana,Ferreira Ricardo M.,Cardoso Susana M.ORCID,Freire Carmen S. R.,Silvestre Armando J. D.ORCID,Silva Artur M. S.ORCID

Abstract

The present work aimed at the valorization of biomass derived compounds by their transformation into new added-value compounds with enhanced antioxidant properties. In this context, betulinic acid (BA) was decorated with polyphenolic fragments, and polyhydroxylated (E)-2-benzylidene-19,28-epoxyoleanane-3,28-diones 4a–d were obtained. For that, the synthetic strategy relied on base-promoted aldol condensation reactions of methyl betulonate, which was previously prepared from natural BA, with appropriate benzaldehydes, followed by cleavage of the methyl protecting groups with BBr3. It is noteworthy that the HBr release during the work-up of the cleavage reactions led to the rearrangement of the lupane-type skeleton of the expected betulonic acid derivatives into oleanane-type compounds 4a–d. The synthesized compounds 4a–d were designed to have specific substitution patterns at C-2 of the triterpene scaffold, allowing the establishment of a structure-activity relationship. The radical scavenging ability of 4a–d was evaluated using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+) scavenging assays. In particular, derivative 4c, bearing a catechol unit, revealed to be the most efficient scavenger against both free radicals DPPH• and ABTS•+. Subsequently, we designed two analogues of the hit derivative 4c in order to achieve more potent antioxidant agents: (i) the first analogue carries an additional unsaturation in its lateral chain at C-2 (analogue 5) and (ii) in the second analogue, E-ring was kept in its open form (analogue 6). It was observed that the presence of an extended π-conjugated system at C-2 contributed to an increased scavenging effect, since analogue 5 was more active than 6, α-tocopherol, and 4c in the ABTS•+ assay.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3