Demyristoylation of the Cytoplasmic Redox Protein Trx-h2 Is Critical for Inducing a Rapid Cold Stress Response in Plants

Author:

Lee Eun SeonORCID,Park Joung Hun,Wi Seong Dong,Chae Ho Byoung,Paeng Seol Ki,Bae Su Bin,Phan Kieu Anh Thi,Kim Min GabORCID,Kwak Sang-SooORCID,Kim Woe-Yeon,Yun Dae-JinORCID,Lee Sang Yeol

Abstract

In Arabidopsis, the cytosolic redox protein thioredoxin h2 (Trx-h2) is anchored to the cytoplasmic endomembrane through the myristoylated second glycine residue (Gly2). However, under cold stress, the cytosolic Trx-h2 is rapidly translocated to the nucleus, where it interacts with and reduces the cold-responsive C-repeat-binding factors (CBFs), thus activating cold-responsive (COR) genes. In this study, we investigated the significance of fatty acid modification of Trx-h2 under cold conditions by generating transgenic Arabidopsis lines in the trx-h2 mutant background, overexpressing Trx-h2 (Trx-h2OE/trx-h2) and its point mutation variant Trx-h2(G/A) [Trx-h2(G/A)OE/trx-h2], in which the Gly2 was replaced by alanine (Ala). Due to the lack of Gly2, Trx-h2(G/A) was incapable of myristoylation, and a part of Trx-h2(G/A) localized to the nucleus even under warm temperature. As no time is spent on the demyristoylation and subsequent nuclear translocation of Trx-h2(G/A) under a cold snap, the ability of Trx-h2(G/A) to protect plants from cold stress was greater than that of Trx-h2. Additionally, COR genes were up-regulated earlier in Trx-h2(G/A)2OE/trx-h2 plants than in Trx-h2OE/trx-h2 plants under cold stress. Consequently, Trx-h2(G/A)2OE/trx-h2 plants showed greater cold tolerance than Col-0 (wild type) and Trx-h2OE/trx-h2 plants. Overall, our results clearly demonstrate the significance of the demyristoylation of Trx-h2 in enhancing plant cold/freezing tolerance.

Funder

Rural Development Administration

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3