Impact of Hydrogen Peroxide on Protein Synthesis in Yeast

Author:

Picazo Cecilia,Molin Mikael

Abstract

Cells must be able to respond and adapt to different stress conditions to maintain normal function. A common response to stress is the global inhibition of protein synthesis. Protein synthesis is an expensive process consuming much of the cell’s energy. Consequently, it must be tightly regulated to conserve resources. One of these stress conditions is oxidative stress, resulting from the accumulation of reactive oxygen species (ROS) mainly produced by the mitochondria but also by other intracellular sources. Cells utilize a variety of antioxidant systems to protect against ROS, directing signaling and adaptation responses at lower levels and/or detoxification as levels increase to preclude the accumulation of damage. In this review, we focus on the role of hydrogen peroxide, H2O2, as a signaling molecule regulating protein synthesis at different levels, including transcription and various parts of the translation process, e.g., initiation, elongation, termination and ribosome recycling.

Funder

Cancerfonden

Vetenskapsrådet

Generalitat of Valencia and European Social Fund

Stiftelsen Assar Gabrielssons Fond

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3