New Unnatural Gallotannins: A Way toward Green Antioxidants, Antimicrobials and Antibiofilm Agents

Author:

Hricovíniová Zuzana,Mascaretti ŠárkaORCID,Hricovíniová Jana,Čížek AloisORCID,Jampílek JosefORCID

Abstract

Nature has been a source of inspiration for the development of new pharmaceutically active agents. A series of new unnatural gallotannins (GTs), derived from d-lyxose, d-ribose, l-rhamnose, d-mannose, and d-fructose have been designed and synthesized in order to study the protective and antimicrobial effects of synthetic polyphenols that are structurally related to plant-derived products. The structures of the new compounds were confirmed by various spectroscopic methods. Apart from spectral analysis, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and iron reducing power (FRAP) assays. Antibacterial activity of compounds was tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. For screening of antimycobacterial effect, a virulent isolate of Mycobacterium tuberculosis and two non-tuberculous mycobacteria were used. Furthermore, antibiofilm activity of structurally different GTs against S. aureus, and their ability to inhibit sortase A, were inspected. Experimental data revealed that the studied GTs are excellent antioxidants and radical-scavenging agents. The compounds exhibited only a moderate antibacterial effect against Gram-positive pathogens S. aureus and E. faecalis and were practically inactive against mycobacteria. However, they were efficient inhibitors and disruptors of S. aureus biofilms in sub-MIC concentrations, and interacted with the quorum-sensing system in Chromobacteriumviolaceum. Overall, these findings suggest that synthetic GTs could be considered as promising candidates for pharmacological, biomedical, consumer products, and for food industry applications.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3