Induction of AML Preleukemic Fusion Genes in HSPCs and DNA Damage Response in Preleukemic Fusion Gene Positive Samples

Author:

Kosik Pavol,Durdik Matus,Skorvaga Milan,Klimova Daniela,Kochanova Dominika,Cerna Zlatica,Kubes Miroslav,Holop Marek,Belyaev Igor

Abstract

Preleukemic fusion genes (PFGs) occurring after DNA damage in hematopoietic stem progenitor cells (HSPCs) in utero often represent the initial event in the development of childhood leukemia. While the incidence of PFGs characteristic for acute lymphoblastic leukemia (ALL) was relatively well examined by several research groups and estimated to be 1–5% in umbilical cord blood (UCB) of healthy newborns, PFGs that are relevant to acute myeloid leukemia (AML) were poorly investigated. Therefore, this study is focused on the estimation of the incidence of the most frequent AML PFGs in newborns. For the first time, this study considered the inducibility of AML PFGs in different subsets of UCB HSPCs by low-dose γ-rays and also compared endogenous DNA damage, apoptosis, and reactive oxygen species (ROS) level between UCB samples containing or lacking AML PFGs. We found that: (i) the incidence of AML PFGs in UCB was 3.19% for RUNX1-RUNX1T1, 3.19% for PML-RARα, and 1.17% for KMT2A-MLLT3, (ii) 50 cGy of γ-rays did not induce RUNX1-RUNX1T1, PML-RARα, or KMT2A-MLLT3 PFGs in different subsets of sorted and expanded HSPCs, and (iii) the AML PFG+ samples accumulated the same level of endogenous DNA damage, as measured by the γH2AX/53BP1 focus formation, and also the same ROS level, and apoptosis as compared to PFG− controls. Our study provides critical insights into the prevalence of AML PFGs in UCB of newborns, without the evidence of a specific HSPC population more susceptible for PFG formation after irradiation to low-dose γ-rays or increased amount of ROS, apoptosis and DNA damage.

Funder

Structural Funds of EU, Protonbeam

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3