Abstract
Oxidative stress plays a key role in the development of chronic diabetes-related complications. Previous metabolomic studies showed a positive association of diabetes and insulin resistance with branched-chain amino acids (AAs) and aromatic AAs. The purpose of this research is to identify distinct metabolic changes associated with increased oxidative stress, as assessed by nitrotyrosine levels, in type 2 diabetes (T2DM). Serum samples of 80 patients with insulin-treated T2DM are analyzed by AA-targeted metabolomics using ultrahigh-performance liquid chromatography/mass spectrometry. Patients are divided into two groups based on their nitrotyrosine levels: the highest level of oxidative stress (Q4 nitrotyrosine) and lower levels (Q1–Q3 nitrotyrosine). The identification of biomarkers is performed in MetaboAnalyst version 5.0 using a t-test corrected for false discovery rate, unsupervised principal component analysis and supervised partial least-squares discriminant analysis (PLS-DA). Four AAs have significantly different levels between the groups for highest and lower oxidative stress. Cysteine, phenylalanine and tyrosine are substantially increased while citrulline is decreased (p-value <0.05 and variable importance in the projection [VIP] >1). Corresponding pathways that might be disrupted in patients with high oxidative stress are phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, phenylalanine metabolism, cysteine and methionine metabolism and tyrosine metabolism.
Funder
“Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献