Characterizing the Role of Biologically Relevant Fluid Dynamics on Silver Nanoparticle Dependent Oxidative Stress in Adherent and Suspension In Vitro Models

Author:

Burns Katherine E.,Uhrig Robert F.,Jewett Maggie E.,Bourbon Madison F.,Krupa Kristen A.ORCID

Abstract

Silver nanoparticles (AgNPs) are being employed in numerous consumer goods and applications; however, they are renowned for inducing negative cellular consequences including toxicity, oxidative stress, and an inflammatory response. Nanotoxicological outcomes are dependent on numerous factors, including physicochemical, biological, and environmental influences. Currently, NP safety evaluations are carried out in both cell-based in vitro and animal in vivo models, with poor correlation between these mechanisms. These discrepancies highlight the need for enhanced exposure environments, which retain the advantages of in vitro models but incorporate critical in vivo influences, such as fluid dynamics. This study characterized the effects of dynamic flow on AgNP behavior, cellular interactions, and oxidative stress within both adherent alveolar (A549) and suspension monocyte (U937) models. This study determined that the presence of physiologically relevant flow resulted in substantial modifications to AgNP cellular interactions and subsequent oxidative stress, as assessed via reactive oxygen species (ROS), glutathione levels, p53, NFκB, and secretion of pro-inflammatory cytokines. Within the adherent model, dynamic flow reduced AgNP deposition and oxidative stress markers by roughly 20%. However, due to increased frequency of contact, the suspension U937 cells were associated with higher NP interactions and intracellular stress under fluid flow exposure conditions. For example, the increased AgNP association resulted in a 50% increase in intracellular ROS and p53 levels. This work highlights the potential of modified in vitro systems to improve analysis of AgNP dosimetry and safety evaluations, including oxidative stress assessments.

Funder

Dayton Area Graduate Studies Institute

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3