Abstract
Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2) transcription factor is recognized for its pro-survival and cell protective role upon exposure to oxidative, chemical, or metabolic stresses. Nrf2 controls a number of cellular processes such as proliferation, differentiation, apoptosis, autophagy, lipid synthesis, and metabolism and glucose metabolism and is a target of activation in chronic diseases like diabetes, neurodegenerative, and inflammatory diseases. The dark side of Nrf2 is revealed when its regulation is imbalanced (e.g., via oncogene activation or mutations) and under such conditions constitutively active Nrf2 promotes cancerogenesis, metastasis, and radio- and chemoresistance. When there is no stress, Nrf2 is instantly degraded via Keap1-Cullin 3 (Cul3) pathway but despite this, cells exhibit a basal activation of Nrf2 target genes. It is yet not clear how Nrf2 maintains the expression of its targets under homeostatic conditions. Here, we found a stable 105 kDa Nrf2 form that is resistant to Keap1-Cul3-mediated degradation and translocates to the nucleus of lung cancer cells. RNA-Seq analysis indicate that it might originate from the exon 2 or exon 3-truncated transcripts. This stable 105 kDa Nrf2 form might help explain the constitutive activity of Nrf2 under normal cellular conditions.
Funder
Foundation for Polish Science
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献