Positive Interaction between H2O2 and Ca2+ Mediates Melatonin-Induced CBF Pathway and Cold Tolerance in Watermelon (Citrullus lanatus L.)

Author:

Chang Jingjing,Guo Yanliang,Li Jiayue,Su Zhuangzhuang,Wang Chunxia,Zhang Ruimin,Wei ChunhuaORCID,Ma Jianxiang,Zhang XianORCID,Li HaoORCID

Abstract

Cold stress is a major environmental factor that detrimentally affects plant growth and development. Melatonin has been shown to confer plant tolerance to cold stress through activating the C-REPEAT BINDING FACTOR (CBF) pathway; however, the underlying modes that enable this function remain obscure. In this study, we investigated the role of H2O2 and Ca2+ signaling in the melatonin-induced CBF pathway and cold tolerance in watermelon (Citrullus lanatus L.) through pharmacological, physiological, and genetic approaches. According to the results, melatonin induced H2O2 accumulation, which was associated with the upregulation of respiratory burst oxidase homolog D (ClRBOHD) during the early response to cold stress in watermelon. Besides, melatonin and H2O2 induced the accumulation of cytoplasmic free Ca2+ ([Ca2+]cyt) in response to cold. This was associated with the upregulation of cyclic nucleotide-gated ion channel 2 (ClCNGC2) in watermelon. However, blocking of Ca2+ influx channels abolished melatonin- or H2O2-induced CBF pathway and cold tolerance. Ca2+ also induced ClRBOHD expression and H2O2 accumulation in early response to cold stress in watermelon. Inhibition of H2O2 production in watermelon by RBOH inhibitor or in Arabidopsis by AtRBOHD knockout compromised melatonin-induced [Ca2+]cyt accumulation and melatonin- or Ca2+-induced CBF pathway and cold tolerance. Overall, these findings indicate that melatonin induces RBOHD-dependent H2O2 generation in early response to cold stress. Increased H2O2 promotes [Ca2+]cyt accumulation, which in turn induces H2O2 accumulation via RBOHD, forming a reciprocal positive-regulatory loop that mediates melatonin-induced CBF pathway and subsequent cold tolerance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3