Differential Yet Integral Contributions of Nrf1 and Nrf2 in the Human HepG2 Cells on Antioxidant Cytoprotective Response against Tert-Butylhydroquinone as a Pro-Oxidative Stressor

Author:

Wufuer ReziyamuORCID,Fan Zhuo,Liu Keli,Zhang YiguoORCID

Abstract

In the past 25 years, Nrf2 (nuclear factor erythroid 2-related factor 2, also called NFE2L2) had been preferentially parsed as a master hub of regulating antioxidant, detoxification, and cytoprotective genes; albeit as a matter of fact that Nrf1 (nuclear factor erythroid 2-related factor 1, also called NFE2L1)—rather than Nrf2—is indispensable for cell homeostasis and organ integrity during normal growth and development. Herein, distinct genotypic cell lines (i.e., Nrf1α−/−, Nrf2−/−ΔTA, and caNrf2ΔN) are employed to determine differential yet integral roles of Nrf1 and Nrf2 in mediating antioxidant responsive genes to tert-butylhydroquinone (tBHQ) serving as a pro-oxidative stressor. In Nrf1α−/− cells, Nrf2 was highly accumulated but also could not fully compensate specific loss of Nrf1α’s function in its basal cytoprotective response against endogenous oxidative stress, though it exerted partially inducible antioxidant response, as the hormetic effect of tBHQ, against apoptotic damages. By contrast, Nrf2−/−ΔTA cells gave rise to a substantial reduction of Nrf1 in both basal and tBHQ-stimulated expression levels and hence resulted in obvious oxidative stress, but it can still be allowed to mediate a potent antioxidant response, as accompanied by a significantly decreased ratio of GSSG (oxidized glutathione) to GSH (reduced glutathione). Conversely, a remarkable increase of Nrf1 expression resulted from the constitutive active caNrf2ΔN cells, which were not manifested with oxidative stress, whether or not it was intervened with tBHQ. Such inter-regulatory effects of Nrf1 and Nrf2 on the antioxidant and detoxification genes (encoding HO-1, NQO1, GCLC, GCLM, GSR, GPX1, TALDO, MT1E, and MT2), as well on the ROS (reactive oxygen species)-scavenging activities of SOD (superoxide dismutase) and CAT (catalase), were further investigated. The collective results unraveled that Nrf1 and Nrf2 make distinctive yet cooperative contributions to finely tuning basal constitutive and/or tBHQ-inducible expression levels of antioxidant cytoprotective genes in the inter-regulatory networks. Overall, Nrf1 acts as a brake control for Nrf2’s functionality to be confined within a certain extent, whilst its transcription is regulated by Nrf2.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3