Rapid Method of Wastewater Classification by Electronic Nose for Performance Evaluation of Bioreactors with Activated Sludge

Author:

Piłat-Rożek Magdalena1ORCID,Dziadosz Marcin1ORCID,Majerek Dariusz1ORCID,Jaromin-Gleń Katarzyna2ORCID,Szeląg Bartosz3ORCID,Guz Łukasz4,Piotrowicz Adam4ORCID,Łagód Grzegorz4ORCID

Affiliation:

1. Faculty of Mathematics and Information Technology, Lublin University of Technology, 20-618 Lublin, Poland

2. Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland

3. Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, 02-797 Warsaw, Poland

4. Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland

Abstract

Currently, e-noses are used for measuring odorous compounds at wastewater treatment plants. These devices mimic the mammalian olfactory sense, comprising an array of multiple non-specific gas sensors. An array of sensors creates a unique set of signals called a “gas fingerprint”, which enables it to differentiate between the analyzed samples of gas mixtures. However, appropriate advanced analyses of multidimensional data need to be conducted for this purpose. The failures of the wastewater treatment process are directly connected to the odor nuisance of bioreactors and are reflected in the level of pollution indicators. Thus, it can be assumed that using the appropriately selected methods of data analysis from a gas sensors array, it will be possible to distinguish and classify the operating states of bioreactors (i.e., phases of normal operation), as well as the occurrence of malfunction. This work focuses on developing a complete protocol for analyzing and interpreting multidimensional data from a gas sensor array measuring the properties of the air headspace in a bioreactor. These methods include dimensionality reduction and visualization in two-dimensional space using the principal component analysis (PCA) method, application of data clustering using an unsupervised method by Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, and at the last stage, application of extra trees as a supervised machine learning method to achieve the best possible accuracy and precision in data classification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3