Heterogeneous Retirement Savings Strategy Selection with Reinforcement Learning

Author:

Ozhamaratli Fatih1ORCID,Barucca Paolo1ORCID

Affiliation:

1. Department of Computer Science, University College London, London WC1E 6BT, UK

Abstract

Saving and investment behaviour is crucial for all individuals to guarantee their welfare during work-life and retirement. We introduce a deep reinforcement learning model in which agents learn optimal portfolio allocation and saving strategies suitable for their heterogeneous profiles. The environment is calibrated with occupation- and age-dependent income dynamics. The research focuses on heterogeneous income trajectories dependent on agents’ profiles and incorporates the parameterisation of agents’ behaviours. The model provides a new flexible methodology to estimate lifetime consumption and investment choices for individuals with heterogeneous profiles.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference31 articles.

1. OECD (2022, June 01). Pension Markets in Focus 2020. Available online: www.oecd.org/finance/pensionmarketsinfocus.htm.

2. ONS (2022, May 01). Occupational Pension Schemes in the UK, Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/pensionssavingsandinvestments/datasets/occupationalpensionschemessurvey.

3. What impact has the COVID-19 pandemic had on underpensioned groups?;Wilkinson;Pensions Policy Inst.,2021

4. Abraham, K., Haltiwanger, J., Sandusky, K., and Spletzer, J. (2017). Measuring and Accounting for Innovation in the 21st Century, Springer.

5. A generative model for age and income distribution;Ozhamaratli;EPJ Data Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3