Analysis of Thermoelastic Contact of Gas-Lubricated Rough Sealing Faces

Author:

Bai Shaoxian1,Chen Yangyang1,Yang Jing1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China

Abstract

Friction and wear are the main failure sources of face seals. When the surfaces of sealing rings exhibit greater roughness, the level of friction might increase and lead to sealing failure. Therefore, in this paper, based on the elastic contact hypothesis of rough and wavy surfaces and the influence of temperature on the elastic modulus of materials, a thermoelastic contact lubrication model of a gas-lubricated end seal is established. The novelty and advantage of this study is that it takes the effect of surface roughness into consideration during thermoelastic analysis of gas-lubricated seals. The film pressure, temperature, contact force and deformation of a gas spiral groove-faced seal are numerically determined. The influence of surface roughness on the contact distribution, deformation and temperature of the end-face seal at different speeds and pressures is analyzed. The film thickness increases as the rotational speed increases from 1 rpm to 2000 rpm, while the contact pressure sharply decreases from 0.25 kPa to 0. The analysis shows that the roughness contact mainly happens on the inner side of the rings due to convergent distortion of the seal faces, which easily causes partial wear of the seal faces. Moreover, it can also be found that the spiral grooves on the sealing surface can produce obvious hydrodynamic pressure effect due to the function of shear speed when the speed increases to 2000 rpm, while the film temperature increases from 293.3 K to about 306 K. The greater surface roughness results in a larger temperature rise under low-rotational-speed and lower-seal-pressure conditions, which further increases the risk of severe wear or even failure of the seal faces.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3