Surface Analysis of Stainless Steel Electrodes Cleaned by Atmospheric Pressure Plasma

Author:

Zhang Jia1,Dang Mengjia1,Luo Cheng1,Ba Yongshan1,Li Qingkai1

Affiliation:

1. School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China

Abstract

The Z-pinch device is a critical component in inertial confinement fusion, where stainless steel electrodes must withstand high current densities of up to MA/cm2. Gases and difficult-to-remove impurities adhering to the electrode surfaces can ionize, significantly impacting the device’s electrical conductivity efficiency. In this paper, the surface of stainless steel electrodes was subjected to cleaning using a large-area plasma jet under atmospheric pressure. The wettability, chemical composition, and chemical state of the electrode surface were characterized using a water contact angle measuring instrument and X-ray photoelectron spectroscopy (XPS). The cleaning effect under different discharge parameters was systematically analyzed. The results revealed a significant reduction in the content of carbon pollutants on the surface of stainless steel electrodes, decreasing from 62.95% to a minimum of 37.68% after plasma cleaning. Moreover, the water contact angle decreased from 70.76° to a minimum of 29.31°, and the content of water molecules adsorbed on the surface decreased from 17.31% to a minimum of 5.9%. Based on the evolution process of micro-element content and chemical state on the surface of stainless steel electrode, the cleaning process of adhering substances on the surface by atmospheric pressure plasma was analyzed by the layered cleaning model for surface pollutants on stainless steel.

Funder

Basic Research Foundation through the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3