Modeling of the Winding Hot-Spot Temperature in Power Transformers: Case Study of the Low-Loaded Fleet

Author:

Kunicki ,Borucki ,Cichoń ,Frymus

Abstract

A proposal of the dynamic thermal rating (DTR) applied and optimized for low-loaded power transformers equipped with on-line hot-spot (HS) measuring systems is presented in the paper. The proposed method concerns the particular population of mid-voltage (MV) to high-voltage (HV) transformers, a case study of the population of over 1500 units with low average load is analyzed. Three representative real-life working units are selected for the method evaluation and verification. Temperatures used for analysis were measured continuously within two years with 1 h steps. Data from 2016 are used to train selected models based on various machine learning (ML) algorithms. Data from 2017 are used to verify the trained models and to validate the method. Accuracy analysis of all applied ML algorithms is discussed and compared to the conventional thermal model. As a result, the best accuracy of the prediction of HS temperatures is yielded by a generalized linear model (GLM) with mean prediction error below 0.71% for winding HS. The proposed method may be implemented as a part of the technical assessment decision support systems and freely adopted for other electrical power apparatus after relevant data are provided for the learning process and as predictors for trained models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3