Abstract
Voltage source converter-based (VSC-based) DC systems play an important role in connecting large-scale renewable energy and distributed energy, but they are vulnerable to DC short-circuit fault and lacks mature protection devices and appropriate protection strategies. Therefore, a hybrid type DC superconducting fault current limiter (H-SFCL) is proposed and the current limiting mechanism of the SFCL is analyzed. According to the requirements and strategies for protection, several different effective parameter matching and optimization methods of the H-SFCL are proposed by combining optimization algorithms and two short-circuit transient calculation models of VSC-based DC systems. The optimization methods proposed in this paper are compared and analyzed in terms of convergence, running time, calculation range and stability of optimization results, revealing their respective calculation characteristics. Finally, the effectiveness of parameter matching and optimization methods are well validated by comparison and analysis of simulation. The proposed methods can select a good parameter matching scheme of the H-SFCL to deal with different requirements.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献