A Comparison of the Dynamic Performance of Conventional and Ternary Pumped Storage Hydro

Author:

Nag SoumyadeepORCID,Lee Kwang Y.,Suchitra D.

Abstract

With decreasing costs of renewable energy harvesting devices, penetration of solar panels and wind turbines have increased manifold. Under such high levels of penetration, coping with increased intermittency and unpredictability and maintaining power system resiliency under reduced inertia conditions has become a critical issue. Pumped storage hydro (PSH) is the most matured and economic form of storage that can serve the purpose of capacity for over 4 to 8 h. However, to increase network inertia and add required flexibility to low inertia power systems, significant paradigm shifting modifications have been engineered to result in the development of Ternary PSH (TPSH). In this paper a test system to consider governor interaction is constructed. The dynamic models of conventional PSH (CPSH) and TPSH are constructed and integrated to the test system to examine the effect of CPSH and TPSH in the hydraulic short circuit (TPSH-HSC). The ability and the effect of mode change (from pump to turbine) without the loss synchronism of TPSH has also been examined. Results display the superior capability and effect of TPSH with its HSC capability to contribute to frequency regulation during pumping mode and the effect of rapid mode change, as compared to its primitive alternative, CPSH.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Forecast System Inertia Condition and Its Impact to Integrate More Renewables

2. Coal Power Plant Post-Retirement Options;Malley;Power Mag.,2016

3. Delhi to Replace Retired Thermal Power Plant with Solar Project;CleanTechnica,2019

4. Ontario utility OPG makes room for solar at demolished coal power plant;Brown;Pv Mag. Int.,2018

5. Canadian Coal-Fired Power Plant Transformed into Solar Farm Yale E360 https://e360.yale.edu/digest/canadian-nanticoke-coal-fired-power-plant-transformed-in-solar-farm

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3