Degradation-Sensitive Health Indicator Construction for Precise Insulation Degradation Monitoring of Electromagnetic Coils

Author:

Sun Yue1234,Wang Kai123,Xu Aidong123,Guan Beiye1234,Li Ruiqi1234,Zhang Bo1234,Zhou Xiufang1234

Affiliation:

1. Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110169, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China

3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Electromagnetic coils are indispensable components for energy conversion and transformation in various systems across industries. However, electromagnetic coil insulation failure occurs frequently, which can lead to serious consequences. To facilitate predictive maintenance for industrial systems, it is essential to monitor insulation degradation prior to the formation of turn-to-turn shorts. This paper experimentally investigates coil insulation degradation from both macro and micro perspectives. At the macro level, an evaluation index based on a weighted linear combination of trend, monotonicity and robustness is proposed to construct a degradation-sensitive health indicator (DSHI) based on high-frequency electrical response parameters for precise insulation degradation monitoring. While at the micro level, a coil finite element analysis and twisted pair accelerated degradation test are conducted to obtain the actual turn-to-turn insulation status. The correlation analysis between macroscopic and microscopic effects of insulation degradation is used to verify the proposed DSHI-based method. Further, it helps to determine the threshold of DSHI. This breakthrough opens new possibilities for predictive maintenance for industrial equipment that incorporates coils.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3