Exploration and Gas Source Localization in Advection–Diffusion Processes with Potential-Field-Controlled Robotic Swarms

Author:

Hinsen Patrick1ORCID,Wiedemann Thomas1ORCID,Shutin Dmitriy1ORCID,Lilienthal Achim J.2ORCID

Affiliation:

1. Institute of Communications and Navigation, German Aerospace Center (DLR), 82234 Wessling, Germany

2. Chair of Perception for Intelligent Systems, School of Computation, Information and Technology (CIT), Technical University of Munich (TUM), 80992 Munich, Germany

Abstract

Mobile multi-robot systems are well suited for gas leak localization in challenging environments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous environments, all while enabling autonomous operation, which is key to efficient swarm exploration. To efficiently localize gas sources using concentration measurements, robots need to seek out informative sampling locations. For this, domain knowledge needs to be incorporated into their exploration strategy. We achieve this by means of partial differential equations incorporated into a probabilistic gas dispersion model that is used to generate a spatial uncertainty map of process parameters. Previously, we presented a potential-field-control approach for navigation based on this map. We build upon this work by considering a more realistic gas dispersion model, now taking into account the mechanism of advection, and dynamics of the gas concentration field. The proposed extension is evaluated through extensive simulations. We find that introducing fluctuations in the wind direction makes source localization a fundamentally harder problem to solve. Nevertheless, the proposed approach can recover the gas source distribution and compete with a systematic sampling strategy. The estimator we present in this work is able to robustly recover source candidates within only a few seconds. Larger swarms are able to reduce total uncertainty faster. Our findings emphasize the applicability and robustness of robotic swarm exploration in dynamic and challenging environments for tasks such as gas source localization.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative gas source localization strategy with networked nano-drones in unknown cluttered environments;Swarm and Evolutionary Computation;2024-08

2. Crystallization-Inspired Design and Modeling of Self-Assembly Lattice-Formation Swarm Robotics;Sensors;2024-05-12

3. Experimental Study of Gas Propagation: Parameter Identification and Analysis in a Wind Tunnel;2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN);2024-05-12

4. Simultaneous Gas Exploration and Network Localization with Robotic Swarms;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3