Improved UAV-to-Ground Multi-Target Tracking Algorithm Based on StrongSORT

Author:

Cao Xinyu1ORCID,Wang Zhuo1ORCID,Zheng Bowen1,Tan Yajie1

Affiliation:

1. School of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China

Abstract

Unmanned aerial vehicles (UAV) are essential for aerial reconnaissance and monitoring. One of the greatest challenges facing UAVs is vision-based multi-target tracking. Multi-target tracking algorithms that depend on visual data are utilized in a variety of fields. In this study, we present a comprehensive framework for real-time tracking of ground robots in forest and grassland environments. This framework utilizes the YOLOv5n detection algorithm and a multi-target tracking algorithm for monitoring ground robot activities in real-time video streams. We optimized both detection and re-identification networks to enhance real-time target detection. The StrongSORT tracking algorithm was selected carefully to alleviate the loss of tracked objects due to factors like camera jitter, intersecting and overlapping targets, and smaller target sizes. The YOLOv5n algorithm was used to train the dataset, and the StrongSORT tracking algorithm incorporated the best-trained model weights. The algorithm’s performance has greatly improved, as demonstrated by experimental results. The number of ID switches (IDSW) has decreased by sixfold, IDF1 has increased by 7.93%, and false positives (FP) have decreased by 30.28%. Additionally, the tracking speed has reached 38 frames per second. These findings validate our algorithm’s ability to fulfill real-time tracking requisites on UAV platforms, delivering dependable resolutions for dynamic multi-target tracking on land.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Pedestrian detection by exemplar-guided contrastive learning;Lin;IEEE Trans. Image Process.,2022

2. A review of vehicle detection techniques for intelligent vehicles;Wang;IEEE Trans. Neural Netw. Learn. Syst.,2022

3. Automatic counting of retinal ganglion cells in the entire mouse retina based on improved YOLOv5;Zhang;Zool. Res.,2022

4. Jones, M. (2001, January 8–14). Rapid Object Detection using a Boosted Cascade of Simple. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA.

5. Dalal, N., and Triggs, B. (2005, January 20–25). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3