Using Improved SPA and ICS-LSSVM for Sustainability Assessment of PV Industry along the Belt and Road

Author:

Liang YiORCID,Wang HaichaoORCID

Abstract

Scientific and timely sustainability evaluation of the photovoltaic industry along the Belt and Road is of great significance. In this paper, a novel hybrid evaluation model is proposed for accurate and real-time assessment that integrates modified set pair analysis with least squares support vector machine that combines improved cuckoo search algorithm. First, the indicator system is set from five principles, namely economy, politics, society, ecological environment and resources. Then, the traditional approach is established through modifying set pair analysis on the basis of variable fuzzy set coupling evaluation theory. A modern intelligent assessment model is designed that integrates improved cuckoo search algorithm and least squares support vector machine where the concept of random weight is introduced in improved cuckoo search algorithm. In the case analysis, the relative errors calculated by the proposed model all fluctuate in the range of [−3%, 3%], indicating that it has the strongest fitting and learning ability. The empirical analysis verifies the scientificity and precision of the method and points out influencing factors. It provides a new idea for rapid and effective assessment of PV industry along the Belt and Road, as well as assistance for the sustainable development of this industry. This paper innovatively proposes the sustainability evaluation index system and evaluation model for the photovoltaic industry in countries along the Belt and Road, thus contributing to the promotion of sustainable development of the photovoltaic industry in countries along the Belt and Road.

Funder

Natural Science Foundation of Hebei Province, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3