Synergistic Modes and Enhanced Oil Recovery Mechanism of CO2 Synergistic Huff and Puff

Author:

Hou Ganggang,Ma Xiaoli,Zhao Wenyue,Diwu Pengxiang,Liu Tongjing,Hou Jirui

Abstract

With the gradual declining of oil increment performance of CO2 huff-and-puff wells, the overall oil exchange rate shows a downward tendency. In this regard, CO2 synergistic huff-and-puff technologies have been proposed to maintain the excellent effect and extend the technical life of such wells. However, there is no specific research on the mechanism and synergistic mode of CO2 huff and puff in horizontal wells. This study aims to establish the synergistic mode and determine the adaptability and acting mechanism of CO2 synergistic huff and puff. Three synergistic huff-and-puff modes are proposed based on the peculiarity of the fault-block reservoir’s small oil-bearing area and broken geological structure. We establish three typical CO2 synergistic huff-and-puff models and analyze the influence of different geological and development factors on the huff-and-puff performance with numerical simulation. Each factor’s sensitivity is clarified, and the enhanced oil recovery (EOR) mechanism of CO2 synergistic huff and puff is proposed. The sensitivity evaluation results show that the reservoir rhythm, inter-well passage, well spacing, high-position well liquid production rate, and middle-well liquid production rate are extremely sensitive factors; the stratum dip and injection volume allocation scheme are sensitive factors; and the relationship with structural isobaths is insensitive. The EOR mechanism of synergistic huff and puff includes gravity differentiation, supplementary formation energy, CO2 forming foam flooding, and coupling effect of production rate and oil reservoirs. The implementation conditions of the two-well cooperative stimulation mode are the simplest. The two-well model is suitable for thick oil layers with a positive rhythm and large formation dip. The single-well mode requires no channeling between the wells, and the multi-well mode requires multi-well rows and can control the intermediate well’s fluid production rate. Field application at C2X1 block shows a good performance with a total oil increment of 1280 t and an average water-cut reduction of 57.7%.

Funder

National Science and Technology Major Projects .

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3