Polymodal Method of Improving the Quality of Photogrammetric Images and Models

Author:

Burdziakowski PawelORCID

Abstract

Photogrammetry using unmanned aerial vehicles has become very popular and is already commonly used. The most frequent photogrammetry products are an orthoimage, digital terrain model and a 3D object model. When executing measurement flights, it may happen that there are unsuitable lighting conditions, and the flight itself is fast and not very stable. As a result, noise and blur appear on the images, and the images themselves can have too low of a resolution to satisfy the quality requirements for a photogrammetric product. In such cases, the obtained images are useless or will significantly reduce the quality of the end-product of low-level photogrammetry. A new polymodal method of improving measurement image quality has been proposed to avoid such issues. The method discussed in this article removes degrading factors from the images and, as a consequence, improves the geometric and interpretative quality of a photogrammetric product. The author analyzed 17 various image degradation cases, developed 34 models based on degraded and recovered images, and conducted an objective analysis of the quality of the recovered images and models. As evidenced, the result was a significant improvement in the interpretative quality of the images themselves and a better geometry model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3