Systematic Comparison of ORC and s-CO2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines

Author:

Ancona Maria AlessandraORCID,Bianchi MicheleORCID,Branchini LisaORCID,De Pascale AndreaORCID,Melino Francesco,Peretto AntonioORCID,Torricelli Noemi

Abstract

Gas turbine power plants are widely employed with constrained efficiency in the industrial field, where they often work under variable load conditions caused by variations in demand, leading to fluctuating exhaust gas temperatures. Suitable energy harvesting solutions can be identified in bottoming cycles, such as the conventional Organic Rankine Cycles (ORC) or the innovative supercritical CO2 (s-CO2) systems. This paper presents a detailed comparison of the potential of ORC and s-CO2 as bottomers of industrial gas turbines in a Combined Heat and Power (CHP) configuration. Different gas turbine models, covering the typical industrial size range, are taken into account and both full- and part-load operations are considered. Performance, component dimensions, and operating costs are investigated, considering ORC and s-CO2 systems specifics in line with the current state-of-the-art products, experience, and technological limits. Results of the study show that the s-CO2 could be more appropriate for CHP applications. Both the electric and thermal efficiency of s-CO2 bottoming cycle show higher values compared with ORC, also due to the fact that in the examined s-CO2 solution, the cycle pressure ratio is not affected by the thermal user temperature. At part-load operation, the gas turbine regulation strategy affects the energy harvesting performance in a CHP arrangement. The estimated total plant investment cost results to be higher for the s-CO2, caused by the higher size of the heat recovery heat exchanger but also by the high specific investment cost still associated to this component. This point seems to make the s-CO2 not profitable as the ORC solution for industrial gas turbine heat recovery applications. Nevertheless, a crucial parameter determining the feasibility of the investment is the prospective carbon tax application.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. World Energy Outlook 2019,2019

2. Waste Energy Recovery Opportunities for Interstate Natural Gas Pipelines;Hedman,2008

3. Cogeneration Supporting the Energy Transition in the Italian Ceramic Tile Industry

4. Thermoflex 29.0,2020

5. Application of environmental performance assessment of CHP systems with local and global approaches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3