Evaluation of ICEYE Microsatellites Sensor for Surface Motion Detection—Jakobshavn Glacier Case Study

Author:

Łukosz Magdalena A.ORCID,Hejmanowski Ryszard,Witkowski Wojciech T.ORCID

Abstract

The marine-terminating glaciers are one of the biggest contributors to global sea-level rise. Research on this aspect of the effects of global climate change is developing nowadays in several directions. One of them is monitoring of glaciers movements, especially with satellite data. In addition to well-known analyzes based on radar data from available satellites, the possibility of studying glacier displacements from new sensors, the so-called microsatellites need to be studied. The main purpose of research was evaluation of the possibility of applying new high-resolution ICEYE radar data to observe glacier motion. Stripmap High mode were used to obtain velocities for the Jakobshavn glacier with an Offset-Tracking method. Obtained results were compared with displacements obtained from the Sentinel-1 data. The comparative analysis was performed on displacements in range and azimuth directions and for maximum velocity values. Moreover, correlation plots showed that in different parts of glaciers, a comparison of obtained velocities delivers different correlation coefficients (R2) in a range from 0.52 to 0.97. The analysis showed that the scale of movements is similar from both sensors. However, Sentinel-1 data present underestimation of velocities comparing to ICEYE data. The biggest deviations between results were observed around the maximum velocities, near the Kangia Ice Fjord Bay. In the analysis the amplitude information was used as well. This research presents that data from the ICEYE microsatellites can be successfully used for monitoring glacial areas and it allows for more precise observations of displacement velocity field.

Funder

European Space Agency

„Excellence Initiative - Research University" for the AGH University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3