Soft Sensor of Heating Extraction Steam Flow Rate Based on Frequency Complementary Information Fusion for CHP Plant

Author:

Tian Liang,Liu Xinping,Luo Huanhuan,Deng Tuoyu,Liu Jizhen,Zhou Guiping,Zhang Tianting

Abstract

Heating extraction steam (HEXTR) flow rate is the key parameter to determine the heat load of a combined heat and power (CHP) plant and the safe operation area of the steam turbine of CHP plant. Due to the difficulty of direct measurement, a soft measurement method of this flow rate is proposed. First, three calculation methods based on different principles are given: the Flügel formula of the steam turbine method, the butterfly valve flow characteristics method, and the improvement of heat balance characteristic of the turbine method. Then, a soft-sensing method through frequency complementary information fusion is proposed to combine the advantages of the three methods. The specific fusion algorithm uses Flügel formula of the turbine as a static model, the heat balance characteristic of the turbine to correct the coefficient in the model, and the butterfly valve characteristic to realize dynamic compensation. Finally, the proposed soft sensor is applied in the monitoring system of a typical 330 MW CHP plant. The actual operating data shows that the relative static measurement error of the soft sensor is less than 1% and the dynamic response is as fast as power load change.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. 2020 National Electric Power Industry Statistics Express List https://www.cec.org.cn/upload/1/editor/1611623903447.pdf

2. Increasing the Flexibility of Combined Heat and Power for Wind Power Integration in China: Modeling and Implications

3. A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage

4. A control method of rapid load change for heat supply units compensating wind power disturbance;Liu;Autom. Electr. Power Syst.,2014

5. A control method of heat supply units for improving frequency control and peak load regulation ability with thermal storage in heat supply net;Deng;Proc. CSEE,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFD analysis of a butterfly valve to optimize its design;2ND INTERNATIONAL CONFERENCE ON APPLIED RESEARCH AND ENGINEERING (ICARAE2022);2023

2. Virtual Soft Sensor of the Feedstock Composition of the Catalytic Reforming Unit;Symmetry;2021-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3