Abstract
Given a graph G with n vertices and l edges, the load distribution of a coloring q: V → {red, blue} is defined as dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored red and bq is the number of edges with at least one end-vertex colored blue. The minimum load coloring problem (MLCP) is to find a coloring q such that the maximum load, lq = 1/l × max{rq, bq}, is minimized. This problem has been proved to be NP-complete. This paper proposes a memetic algorithm for MLCP based on an improved K-OPT local search and an evolutionary operation. Furthermore, a data splitting operation is executed to expand the data amount of global search, and a disturbance operation is employed to improve the search ability of the algorithm. Experiments are carried out on the benchmark DIMACS to compare the searching results from memetic algorithm and the proposed algorithms. The experimental results show that a greater number of best results for the graphs can be found by the memetic algorithm, which can improve the best known results of MLCP.
Funder
the Scientific Research Fund of Key Laboratory of Pattern Recognition and Intelligent Information Processing of Chengdu University
Sichuan Science and Technology Program
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献