Abstract
Vaccines are not administered on a continuous basis, but injections are practically introduced at discrete times often separated by an important number of time units, and this differs depending on the nature of the epidemic and its associated vaccine. In addition, especially when it comes to vaccination, most optimization approaches in the literature and those that have been subject to epidemic models have focused on treating problems that led to continuous vaccination schedules but their applicability remains debatable. In search of a more realistic methodology to resolve this issue, a control modeling design, where the control can be characterized analytically and then optimized, can definitely help to find an optimal regimen of pulsed vaccinations. Therefore, we propose a susceptible-infected-removed (SIR) hybrid epidemic model with impulse vaccination control and a compartment that represents the number of vaccinated individuals supposed to not acquire sufficient immunity to become permanently recovered due to the short-term effect of vaccines. A basic reproduction number, when the control is defined as a constant parameter, is calculated. Since we also need to find the optimal values of this impulse control when it is defined as a function of time, we start by stating a general form of an impulse version of Pontryagin’s maximum principle that can be adapted to our case, and then we apply it to our model. Finally, we provide our numerical simulations that are obtained via an impulse progressive-regressive iterative scheme with fixed intervals between impulse times (theoretical example of an impulse at each week), and we conclude with a discussion of our results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献