Abstract
Recently, cell-based immunotherapy has become one of the most promising ways to completely eliminate cancer. The major challenge is to effectively promote a proper immune response to kill the cancer cells by activated T cells. This study investigated the effect of T cell-mediated immunotherapy trigged by Au DENPs-MPC (zwitterion 2-methacryloyloxyethyl phosphorylcholine (MPC)-functionalized dendrimer-entrapped gold nanoparticles) loading oli-godeoxynucleotides (ODN) of unmethylated cytosine guanine dinucleotide (CPG). Here, we first synthesized Au DENPs-MPC, evaluated their capability to compress and transfect CpG-ODN to bone marrow dendritic cells (BMDCs), and investigated the potential to use T cells stimulated by matured BMDCs to inhibit the growth of tumor cells. The developed Au DENPs-MPC could apparently reduce the toxicity of Au DENPs, and enhanced transfer CpG-ODN to the BMDCs for the maturation as demonstrated by the 44.41–48.53% increase in different surface maturation markers. The transwell experiments certificated that ex vivo activated T cells display excellent anti-tumor ability, which could effectively inhibit the growth of tumor cells. These results suggest that Au DENPs-MPC can deliver CpG-ODN efficiently to enhance the antigen presentation ability of BMDCs to activate T cells, indicating that T cells-based immunotherapy mediated by Au DENPs-MPC loaded with CpG-ODN may become the most promising treatment of cancer.
Subject
Clinical Biochemistry,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献