Abstract
Lung cancer is a leading cause of death worldwide, claiming nearly 1.80 million lives in 2020. Screening with low-dose computed tomography (LDCT) reduces lung cancer mortality by about 20% compared to standard chest X-rays among current or heavy smokers. However, several reports indicate that LDCT has a high false-positive rate. In this regard, methods based on biomarker detection offer excellent potential for developing noninvasive cancer diagnostic tests to complement LDCT for detecting stage 0∼IV lung cancers. Herein, we have developed a method for detecting and quantifying a p53-anti-p53 autoantibody complex and the total p53 antigen (wild and mutant). The LOD for detecting Tp53 and PIC were 7.41 pg/mL and 5.74 pg/mL, respectively. The detection ranges for both biomarkers were 0–7500 pg/mL. The known interfering agents in immunoassays such as biotin, bilirubin, intra-lipid, and hemoglobin did not detect Tp53 and PIC, even at levels that were several folds higher levels than their normal levels. Furthermore, the present study provides a unique report on this preliminary investigation using the PIC/Tp53 ratio to detect stage I–IV lung cancers. The presented method detects lung cancers with 81.6% sensitivity and 93.3% specificity. These results indicate that the presented method has high applicability for the identification of lung cancer patients from the healthy population.
Funder
Ministry of Trade, Industry and Energy
Subject
Clinical Biochemistry,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献