Design and Implementation of a Multi-Function Gripper for Grasping General Objects

Author:

Kang Long,Seo Jong-Tae,Kim Sang-Hwa,Kim Wan-Ju,Yi Byung-Ju

Abstract

The development of a reliable pick-and-place system for industrial robotics is facing an urgent demand because many manual-labor works, such as piece-picking in warehouses and fulfillment centers tend toward automation. This paper presents an integrated gripper that combines a linkage-driven underactuated gripper with a suction gripping system for picking up a variety of objects in different working environments. The underactuated gripper consists of two fingers, and each finger has three degrees of freedom that are obtained by stacking one five-bar mechanism over one double parallelogram. Furthermore, each finger is actuated by two motors, both of which can be installed at the base owing to the special architecture of the proposed robotic finger. A suction cup is used to grasp objects in narrow spaces and cluttered environments. The combination of the suction and traditional linkage-driven grippers allows stable and reliable grasping under different working environments. Finally, practical experiments using a wide range of objects and under different grasping scenarios are performed to demonstrate the grasping capability of the integrated gripper.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Design of a Dextrous Hand for Advanced CLAWAR Applications http://www.shadowrobot.com/downloads/dextrous_hand_final.pdf

2. Grasp configuration planning for a low-cost and easy-operation underactuated three-fingered robot hand

3. Underactuated Robotic Hands;Birglen,2007

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3