Functional Antimicrobial Surface Coatings Deposited onto Nanostructured 316L Food-Grade Stainless Steel

Author:

González A.,Riego Angela,Vega Victor,García JavierORCID,Galié Serena,Gutiérrez del Río Ignacio,Martínez de Yuso Maria,Villar Claudio,Lombó FelipeORCID,De la Prida VictorORCID

Abstract

In our study, we demonstrated the performance of antimicrobial coatings on properly functionalized and nanostructured 316L food-grade stainless steel pipelines. For the fabrication of these functional coatings, we employed facile and low-cost electrochemical techniques and surface modification processes. The development of a nanoporous structure on the 316L stainless steel surface was performed by following an electropolishing process in an electrolytic bath, at a constant anodic voltage of 40 V for 10 min, while the temperature was maintained between 0 and 10 °C. Subsequently, we incorporated on this nanostructure additional coatings with antimicrobial and bactericide properties, such as Ag nanoparticles, Ag films, or TiO2 thin layers. These functional coatings were grown on the nanostructured substrate by following electroless process, electrochemical deposition, and atomic layer deposition (ALD) techniques. Then, we analyzed the antimicrobial efficiency of these functionalized materials against different biofilms types (Candida parapsilosis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis). The results of the present study demonstrate that the nanostructuring and surface functionalization processes constitute a promising route to fabricate novel functional materials exhibiting highly efficient antimicrobial features. In fact, we have shown that our use of an appropriated association of TiO2 layer and Ag nanoparticle coatings over the nanostructured 316L stainless steel exhibited an excellent antimicrobial behavior for all biofilms examined.

Funder

IDEPA & Regional Goverment of Principality of Asturias

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference70 articles.

1. The History of Stainless Steel;Cobb,2010

2. An overview of the influence of stainless-steel surface properties on bacterial adhesion;Hočevar;Mater. Tehnol.,2014

3. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria

4. Environmental Influences on Biofilm Development

5. Antibiotic resistance of bacteria in biofilms

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3