Flame Spray Pyrolysis Co3O4/CoO as Highly-Efficient Nanocatalyst for Oxygen Reduction Reaction

Author:

Belles Loukas,Moularas Constantinos,Smykała SzymonORCID,Deligiannakis Yiannis

Abstract

The oxygen reduction reaction (ORR) is the rate-limiting reaction in the cathode side of fuel cells. In the quest for alternatives to Pt-electrodes as cathodes in ORR, appropriate transition metal oxide-based electrocatalysts are needed. In the present work, we have synthesized Co3O4 and CoO/Co3O4 nanostructures using flame spray pyrolysis (FSP), as electrocatalysts for ORR in acidic and alkaline media. A detailed study of the effect of (Co-oxide)/Pt ratio on ORR efficiency shows that the present FSP-made Co-oxides are able to perform ORR at very low-Pt loading, 0.4% of total metal content. In acid medium, an electrode with (5.2% Pt + 4.8% Co3O4), achieved the highest ORR performance (Jmax = 8.31 mA/cm2, E1/2 = 0.66 V). In alkaline medium, superior performance and stability have been achieved by an electrode with (0.4%Pt + 9.6% (CoO/Co3O4)) with ORR activity (Jmax = 3.5 mA/cm2, E1/2 = 0.08 V). Using XRD, XPS, Raman and TEM data, we discuss the structural and electronic aspects of the FSP-made Co-oxide catalysts in relation to the ORR performance. Cyclic voltammetry data indicate that the ORR process involves active sites associated with Co3+ cations at the cobalt oxide surface. Technology-wise, the present work demonstrates that the developed FSP-protocols, constitutes a novel scalable process for production of co-oxides appropriate for oxygen reduction reaction electrodes.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3