Abstract
The article presents a mathematical model for the magnetized nanofluid flow and heat transfer with an exothermic chemical reaction controlled by Arrhenius kinetics. Buongiorno’s model with passive boundary condition is employed to formulate the governing equation for nanoparticles concentration. The momentum equation with slip boundary conditions is modelled with the inclusion of electroosmotic effects which remain inattentive in the study of microchannel flows with electric double layer (EDL) effects. Conclusions are based on graphical and numerical results for the dimensionless numbers representing the features of heat transfer and fluid flow. Frank-Kamenetskii parameter resulting from the chemical reaction showed significant effects on the optimization of heat transfer, leading to increased heat exchangers’ effectiveness. The Hartmann number and slip parameter significantly affect skin friction, demonstrating the notable effects of electroosmotic flow and the exothermic chemical reaction on heat transfer in microchannels. This analysis contributes to prognosticating the convective heat transfer of nanofluids on a micro-scale for accomplishing successful thermal designs.
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献