Abstract
The material BaBiO3 is known for its insulating character. However, for thin films, in the ultra-thin limit, metallicity is expected because the oxygen octahedra breathing mode will be suppressed as reported recently. Here, we confirm the influence of the oxygen breathing mode on the size of the band gap. The electronic properties of a BaBiO3 thickness series are studied using in-situ scanning tunneling microscopy. We observe a wide-gap (EG > 1.2 V) to small-gap (EG ≈ 0.07 eV) semiconductor transition as a function of a decreasing BaBiO3 film thickness. However, even for an ultra-thin BaBiO3 film, no metallic state is present. The dependence of the band gap size is found to be coinciding with the intensity of the Raman response of the breathing phonon mode as a function of thickness.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献