Monitoring Dark-State Dynamics of a Single Nitrogen-Vacancy Center in Nanodiamond by Auto-Correlation Spectroscopy: Photonionization and Recharging

Author:

Zhang Mengdi,Li Bai-YanORCID,Liu JingORCID

Abstract

In this letter, the photon-induced charge conversion dynamics of a single Nitrogen-Vacancy (NV) center in nanodiamond between two charge states, negative (NV−) and neutral (NV0), is studied by the auto-correlation function. It is observed that the ionization of NV− converts to NV0, which is regarded as the dark state of the NV−, leading to fluorescence intermittency in single NV centers. A new method, based on the auto-correlation calculation of the time-course fluorescence intensity from NV centers, was developed to quantify the transition kinetics and yielded the calculation of transition rates from NV− to NV0 (ionization) and from NV0 to NV− (recharging). Based on our experimental investigation, we found that the NV−-NV0 transition is wavelength-dependent, and more frequent transitions were observed when short-wavelength illumination was used. From the analysis of the auto-correlation curve, it is found that the transition time of NV− to NV0 (ionization) is around 0.1 μs, but the transition time of NV0 to NV− (recharging) is around 20 ms. Power-dependent measurements reveal that the ionization rate increases linearly with the laser power, while the recharging rate has a quadratic increase with the laser power. This difference suggests that the ionization in the NV center is a one-photon process, while the recharging of NV0 to NV− is a two-photon process. This work, which offers theoretical and experimental explanations of the emission property of a single NV center, is expected to help the utilization of the NV center for quantum information science, quantum communication, and quantum bioimaging.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3