Peculiarities of Thermodynamic Behaviors of Xenon Adsorption on the Activated Carbon Prepared from Silicon Carbide

Author:

Men’shchikov IlyaORCID,Shkolin Andrey,Khozina ElenaORCID,Fomkin Anatoly

Abstract

An activated carbon prepared from silicon carbide by thermochemical synthesis and designated as SiC-AC was studied as an adsorbent for xenon. The examination of textural properties of the SiC-AC adsorbent by nitrogen vapor adsorption measurements at 77 K, powder X-ray diffraction, and scanning electron microscopy revealed a relatively homogeneous microporous structure, a low content of heteroatoms, and an absence of evident transport macropores. The study of xenon adsorption and adsorption-induced deformation of the Si-AC adsorbent over the temperature range of 178 to 393 K and pressures up to 6 MPa disclosed the contraction of the material up to −0.01%, followed by its expansion up to 0.49%. The data on temperature-induced deformation of Si-AC measured within the 260 to 575 K range was approximated by a linear function with a thermal expansion factor of (3 ± 0.15) × 10−6 K−1. These findings of the SiC-AC non-inertness taken together with the non-ideality of an equilibrium xenon gaseous phase allowed us to make accurate calculations of the differential isosteric heats of adsorption, entropy, enthalpy, and heat capacity of the Xe/SiC-AC adsorption system from the experimental adsorption data over the temperature range from 178 to 393 K and pressures up to 6 MPa. The variations in the thermodynamic state functions of the Xe/SiC-AC adsorption system with temperature and amount of adsorbed Xe were attributed to the transitions in the state of the adsorbate in the micropores of SiC-AC from the bound state near the high-energy adsorption sites to the molecular associates.

Funder

Ministry of Science and Higher Education of the Russian Federation

RAS Scientific Council of Physical Chemistry

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference112 articles.

1. Thermal-Physical Properties of Neon, Argon, Krypton, and Xenon;Rabinovich,1976

2. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia

3. Industrial plant for Xenon extraction from tail streams of air fractionating plants

4. Nuclear power: For or against? Comparative analysis of radioactive contamination from NPP and coal-fired TPP;Gordienko;Moscow Univ. Bull. Ser. 3 Physics Astronomy,2012

5. Adsorption of Krypton and Xenon on Various Adsorbents

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3