Enhancement of Catalytic Activity and Durability of Pt Nanoparticle through Strong Chemical Interaction with Electrically Conductive Support of Magnéli Phase Titanium Oxide

Author:

Dogan Didem C.,Choi Jiye,Seo Min Ho,Lee Eunjik,Jung NamgeeORCID,Yim Sung-Dae,Yang Tae-Hyun,Park Gu-GonORCID

Abstract

In this study, we address the catalytic performance of variously sized Pt nanoparticles (NPs) (from 1.7 to 2.9 nm) supported on magnéli phase titanium oxide (MPTO, Ti4O7) along with commercial solid type carbon (VXC-72R) for oxygen reduction reaction (ORR). Key idea is to utilize a robust and electrically conductive MPTO as a support material so that we employed it to improve the catalytic activity and durability through the strong metal-support interaction (SMSI). Furthermore, we increase the specific surface area of MPTO up to 61.6 m2 g−1 to enhance the SMSI effect between Pt NP and MPTO. After the deposition of a range of Pt NPs on the support materials, we investigate the ORR activity and durability using a rotating disk electrode (RDE) technique in acid media. As a result of accelerated stress test (AST) for 30k cycles, regardless of the Pt particle size, we confirmed that Pt/MPTO samples show a lower electrochemical surface area (ECSA) loss (<20%) than that of Pt/C (~40%). That is explained by the increased dissolution potential and binding energy of Pt on MPTO against to carbon, which is supported by the density functional theory (DFT) calculations. Based on these results, we found that conductive metal oxides could be an alternative as a support material for the long-term fuel cell operation.

Funder

Korea Evaluation Institute of Industrial Technology

National Research Foundation of Korea

Korea Institute of Energy Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3