The Tuning of LIPSS Wettability during Laser Machining and through Post-Processing

Author:

Wood Michael J.ORCID,Servio PhillipORCID,Kietzig Anne-MarieORCID

Abstract

In this work, we investigate the fabrication of stainless-steel substrates decorated with laser-induced periodic surface structures (LIPSS) of both hydrophilic and hydrophobic wettability through different post-processing manipulation. In carrying out these experiments, we have found that while a CO2-rich atmosphere during irradiation does not affect final wettability, residence in such an atmosphere after irradiation does indeed increase hydrophobicity. Contrarily, residence in a boiling water bath will instead lead to a hydrophilic surface. Further, our experiments show the importance of removing non-sintered nanoparticles and agglomerates after laser micromachining. If they are not removed, we demonstrate that the nanoparticle agglomerates themselves become hydrophobic, creating a Cassie air-trapping layer on the surface which presents with water contact angles of 180°. However, such a surface lacks robustness; the particles are removed with the contacting water. What is left behind are LIPSS which are integral to the surface and have largely been blocked from reacting with the surrounding atmosphere. The actual surface presents with a water contact angle of approximately 80°. Finally, we show that chemical reactions on these metallic surfaces decorated with only LIPSS are comparatively slower than the reactions on metals irradiated to have hierarchical roughness. This is shown to be an important consideration to achieve the highest degree of hydro-philicity/phobicity possible. For example, repeated contact with water from goniometric measurements over the first 30 days following laser micromachining is shown to reduce the ultimate wettability of the surface to approximately 65°, compared to 135° when the surface is left undisturbed for 30 days.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3