3D and Boundary Effects on 2D Electrical Resistivity Tomography

Author:

Hung Yin-Chun,Lin Chih-PingORCID,Lee Chin-TanORCID,Weng Ko-WeiORCID

Abstract

Electrical resistivity tomography (ERT) is one of the most widely used geophysical methods in geological, hydrogeological, and geo-environmental investigations. Although 3D ERT is now available, 2D ERT remains state-of-the-practice due to its simplicity in fieldwork and lower space requirements. 2D ERT assumes that the ground condition is perpendicular to the survey line and outside the survey line is homogeneous. This assumption can often be violated in conditions such as geologic strikes not perpendicular to the survey line and topographic changes or buried objects near the survey line. Possible errors or artifacts in the 2D resistivity tomogram arising from violating the 2D assumption are often overlooked. This study aimed to numerically investigate the boundary effects on 2D ERT under various simplified conditions. Potential factors including resistivity contrast, depth and size of buried objects, and electrode spacing were considered for the parametric studies. The results revealed that offline geologic features may project onto the 2D tomogram to some extent, depending on the aforementioned factors. The mechanism and implications of boundary effects can be drawn from these parametric studies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3