Numerical Investigation of Jet Angle Effect on Airfoil Stall Control

Author:

Kim Junkyu,Park Young Min,Lee Junseong,Kim Taesoon,Kim Minwoo,Lim Jiseop,Jee Solkeun

Abstract

Numerical study on flow separation control is conducted for a stalled airfoil with steady-blowing jet. Stall conditions relevant to a rotorcraft are of interest here. Both static and dynamic stalls are simulated with solving compressible Reynolds-averaged Navier-Stokes equations. It is expected that a jet flow, if it is applied properly, provides additional momentum in the boundary layer which is susceptible to flow separation at high angles of attack. The jet angle can influence on the augmentation of the flow momentum in the boundary layer which helps to delay or suppress the stall. Two distinct jet angles are selected to investigate the impact of the jet angle on the control authority. A tangential jet with a shallow jet angle to the surface is able to provide the additional momentum to the flow, whereas a chord-normal jet with a large jet angle simply averts the external flow. The tangential jet reduces the shape factor of the boundary layer, lowering the susceptibility to the flow separation and delaying both the static and dynamic stalls.

Funder

Agency for Defense Development

Defense Acquisition Program Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Compressibility effects on dynamic stall

2. Rotorcraft Aeromechanics;Johnson,2013

3. Principles of Helicopter Aerodynamics;Leishman,2006

4. Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3