Abstract
We experimentally demonstrate an optical Burst-Mode Wavelength Converter (BMWC) that simultaneously provides power equalization and wavelength conversion of Non-Return to Zero-On/Off Keying (NRZ-OOK) data and operates up to 20 Gb/s. It employs a balanced, differentially-biased, Semiconductor Optical Amplifier-Mach Zehnder Interferometer (SOA-MZI) operating in deeply saturated regime and its performance is evaluated at 10 Gb/s and 20 Gb/s with loud/soft peak–power ratios up to 9 dB and 5 dB, respectively. Bit Error Rate (BER) measurements reveal error free operation with up to 6.1 dB BER improvement at 10 Gb/s and 3.51 dB at 20 Gb/s, while the use of a single SOA-MZI yields 50% reduction in the number of active components against state-of-the-art BMWCs. Finally, the proposed BMWC is evaluated in non-dispersion compensated 25 km fiber transmission experiment, providing error-free operation with 1.43 dB BER improvement, validating its capabilities for potential employment in Passive Optical Networks (PON) and 5G fronthaul networks.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science