Superpixel-Based Feature Tracking for Structure from Motion

Author:

Cao MingweiORCID,Jia Wei,Lv Zhihan,Zheng Liping,Liu Xiaoping

Abstract

Feature tracking in image collections significantly affects the efficiency and accuracy of Structure from Motion (SFM). Insufficient correspondences may result in disconnected structures and incomplete components, while the redundant correspondences containing incorrect ones may yield to folded and superimposed structures. In this paper, we present a Superpixel-based feature tracking method for structure from motion. In the proposed method, we first propose to use a joint approach to detect local keypoints and compute descriptors. Second, the superpixel-based approach is used to generate labels for the input image. Third, we combine the Speed Up Robust Feature and binary test in the generated label regions to produce a set of combined descriptors for the detected keypoints. Fourth, the locality-sensitive hash (LSH)-based k nearest neighboring matching (KNN) is utilized to produce feature correspondences, and then the ratio test approach is used to remove outliers from the previous matching collection. Finally, we conduct comprehensive experiments on several challenging benchmarking datasets including highly ambiguous and duplicated scenes. Experimental results show that the proposed method gets better performances with respect to the state of the art methods.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

[Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3