An Intelligent Event-Sentiment-Based Daily Foreign Exchange Rate Forecasting System

Author:

Yasir Muhammad,Durrani Mehr Yahya,Afzal Sitara,Maqsood MuazzamORCID,Aadil FarhanORCID,Mehmood IrfanORCID,Rho Seungmin

Abstract

Financial time series analysis is an important research area that can predict various economic indicators such as the foreign currency exchange rate. In this paper, a deep-learning-based model is proposed to forecast the foreign exchange rate. Since the currency market is volatile and susceptible to ongoing social and political events, the proposed model incorporates event sentiments to accurately predict the exchange rate. Moreover, as the currency market is heavily dependent upon highly volatile factors such as gold and crude oil prices, we considered these sensitive factors for exchange rate forecasting. The validity of the model is tested over three currency exchange rates, which are Pak Rupee to US dollar (PKR/USD), British pound sterling to US dollar (GBP/USD), and Hong Kong Dollar to US dollar (HKD/USD). The study also shows the importance of incorporating investor sentiment of local and foreign macro-level events for accurate forecasting of the exchange rate. We processed approximately 5.9 million tweets to extract major events’ sentiment. The results show that this deep-learning-based model is a better predictor of foreign currency exchange rate in comparison with statistical techniques normally employed for prediction. The results present evidence that the exchange rate of all the three countries is more exposed to events happening in the US.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3