Dynamics of Mesozooplankton Assemblage in Relation to Environmental Factors in the Maryland Coastal Bays

Author:

Oghenekaro ,Chigbu

Abstract

The mesozooplankton composition and dynamics in coastal lagoons of Maryland, mid-Atlantic region, USA have received little scientific attention despite the fact that the lagoons have undergone changes in water quality in the past two decades. We compared mesozooplankton abundance and community structure among sites and seasons, and between 2012, a year of higher than average salinity (33.4), and 2013 with lower than average salinity (26.6). It was observed that the composition, diversity, and abundance of mesozooplankton in 2012 differed from those of 2013. Barnacle nauplii were abundant in 2012 contributing 31% of the non-copepod mesozooplankton abundance, whereas hydromedusae were more dominant in 2013 and contributed up to 83% of non-copepod zooplankton abundance. Gastropod veliger larvae were more abundant in 2013 than in 2012 while larvae of bivalves, polychaetes, and decapods, in addition to cladocerans and ostracods had higher abundances in 2012. The abundance and diversity of mesozooplankton were explained by variations in environmental factors particularly salinity, and by the abundance of predators such as bay anchovy (Anchoa mitchelli). Diversity was higher in spring and summer 2012 (dry year) than in 2013 (wet year). The reduction of salinity in fall 2012, due to high freshwater discharge associated with Hurricane Sandy, was accompanied by a decrease in mesozooplankton diversity. Spatially, diversity was higher at sites with high salinity near the Ocean City Inlet than at sites near the mouth of tributaries with lower salinity, higher nutrient levels and higher phytoplankton biomass. Perhaps, the relatively low salinity and high temperature in 2013 resulted in an increase in the abundance of hydromedusae, which through predation contributed to the reduction in the abundance of bivalve larvae and other taxa.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3