Mapping Dynamics of Bacterial Communities in a Full-Scale Drinking Water Distribution System Using Flow Cytometry

Author:

Schleich Caroline,Chan Sandy,Pullerits Kristjan,Besmer Michael D.,Paul Catherine J.,Rådström Peter,Keucken Alexander

Abstract

Microbial monitoring of drinking water is required to guarantee high quality water and to mitigate health hazards. Flow cytometry (FCM) is a fast and robust method that determines bacterial concentrations in liquids. In this study, FCM was applied to monitor the dynamics of the bacterial communities over one year in a full-scale drinking water distribution system (DWDS), following implementation of ultrafiltration (UF) combined with coagulation at the drinking water treatment plant (DWTP). Correlations between the environmental conditions in the DWDS and microbial regrowth were observed, including increases in total cell counts with increasing retention time (correlation coefficient R = 0.89) and increasing water temperature (up to 5.24-fold increase in cell counts during summer). Temporal and spatial biofilm dynamics affecting the water within the DWDS were also observed, such as changes in the percentage of high nucleic acid bacteria with increasing retention time (correlation coefficient R = −0.79). FCM baselines were defined for specific areas in the DWDS to support future management strategies in this DWDS, including a gradual reduction of chloramine.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3