Study on the Repair Technology of Laser Damage-Fused Silica Optics Based on the Neural Network Method

Author:

Wang Bo,Zhang Wanli,Shi Feng,Song CiORCID,Zhang Yaofei,Sun GuoyanORCID,Guo Shuangpeng

Abstract

As a key component of a high-power laser device, fused silica optics needs to bear great laser energy, and laser damage is easily generated on the optical surface. In order to improve the service life and availability of optics, it is necessary to repair the damaged optics. In this work, the repair technique of damaged, fused silica optics was studied. The neural network method was mainly used to establish the correlation between the number of small-scale damage points and the repair depth. The prediction accuracy of the model is better than 90%. Based on the neural network model, the removal depth parameters were optimized with the suppression coefficient of the damage points. The processing effect of the optimized parameters was verified by magnetorheological polishing experiments. In this paper, a repair technique based on a neural network was proposed, which avoids the low efficiency caused by processing iterations in the repair process, and can accurately what was expected. The method proposed in this work has an important reference value in the repair process of fused silica optics.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3