Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions

Author:

Amin Muhammad NasirORCID,Ahmad WaqasORCID,Khan KaffayatullahORCID,Ahmad Ayaz,Nazar SohaibORCID,Alabdullah Anas AbdulalimORCID

Abstract

Incorporating waste material, such as recycled coarse aggregate concrete (RCAC), into construction material can reduce environmental pollution. It is also well-known that the inferior properties of recycled aggregates (RAs), when incorporated into concrete, can impact its mechanical properties, and it is necessary to evaluate the optimal performance. Accordingly, artificial intelligence has been used recently to evaluate the performance of concrete compressive behaviour for different types of construction material. Therefore, supervised machine learning techniques, i.e., DT-XG Boost, DT-Gradient Boosting, SVM-Bagging, and SVM-Adaboost, are executed in the current study to predict RCAC’s compressive strength. Additionally, SHapley Additive exPlanations (SHAP) analysis shows the influence of input parameters on the compressive strength of RCAC and the interactions between them. The correlation coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE) are used to assess the model’s performance. Subsequently, the k-fold cross-validation method is executed to validate the model’s performance. The R2 value of 0.98 from DT-Gradient Boosting supersedes those of the other methods, i.e., DT- XG Boost, SVM-Bagging, and SVM-Adaboost. The DT-Gradient Boosting model, with a higher R2 value and lower error (i.e., MAE, RMSE) values, had a better performance than the other ensemble techniques. The application of machine learning techniques for the prediction of concrete properties would consume fewer resources and take less time and effort for scholars in the respective engineering field. The forecasting of the proposed DT-Gradient Boosting models is in close agreement with the actual experimental results, as indicated by the assessment output showing the improved estimation of RCAC’s compressive strength.

Funder

King Faisal University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3